

GCE

Mathematics

Advanced GCE Unit **4732:** Probability and Statistics 1

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Note: "(3 sfs)" means "answer which rounds to to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding
Penalise over-rounding only once in <u>paper</u> .

Total		7		
				but "Unreliable because extrapolated and poor corr'n": B1B1
				NOT "Unreliable because extrapolated": B0B0
				"Unreliable because r smaller than (–)0.7"
			Must have correct reason	"Unreliable because r not close to -1"
				"Unreliable because not strong neg"
		2	or "less reliable" or "not that reliable"	"Unreliable because pts do not fit a st line"
	Unreliable	B1dep	Condone "innacurate" or "incorrect"	Allow:
	or $r = -0.122$		or no evidence to link sales & distance	Ignore other
ii	r close to 0, or small, or poor corr'n oe	B1	or Weak/no corr'n or poor rel'nship oe	or because small sample
				NOT "Little effect" NOT "Not much effect"
с	No effect or -0.122 oe	B1 1	eg "Nothing" or "None" oe	Ignore other
				No recovery of this mark in (ii)
				NOT "negative corr'n"
				NOT "Not proportional"
			distance, even if incorrect	distance
			In context, ie <u>any</u> comment on income &	No rel'nship. Low income doesn't cause low
	distance oe	B1 1		income
b	Poor/no/little/weak/not strong corr'n or rel'nship or link between income $\&$		or slight neg/weak corr n (oe) between income	eg, Poor neg corr'n so higher distance lower
	=-0.1219	A1 3	Must see at least 4 sfs	Allow –0.1218
	$\sqrt{(14323 - \frac{251^2}{5})(855 - \frac{65^2}{5})} \qquad \sqrt{1/22.8 \times 10}$			$\frac{1}{\sqrt{8614\times50}}$
11a	$\frac{324}{5}$ or $\frac{-16}{\sqrt{1722.0.10}}$	M2	M2 for correct subst'n in any correct r formula $M2$	-80
1ia	3247_251×65		M1 for correct subst in any correct S formula	

2	Attempt ranks	M1	Ignore labels of rows or columns	
	4 1 2 3 or 1 2 3 4 or 1 2 3 4 oe			
	2134 1342 1423	A1	No ranks seen, $d = (0), \pm 1, \pm 1, \pm 2$, or	
			$d^2 = (0), 1, 1, 4$ any order: M1A1	No wking, $\Sigma d^2 = 6$: M1A1M1
	Σd^2 attempted (or 6)	M1	NOT $(\Sigma d)^2$	No wking, $2a^2 = eg 14$: MOA0M0, but can gain 3^2 M1
	$1 - \frac{6\Sigma d^2}{4(4^2 - 1)}$	M1		No series and 2 a Fall sales
	$4(4^{-}-1)$	1011		No wking, ans $\frac{1}{5}$: Full mks
	$=\frac{2}{5}$ oe	A1 5		Allow both sets of ranks reversed
				NB incorrect method:
				2 3 4 1 2 1 2 4 OP $d = (0) + 2 + 1 + 2$ any order
				$OR d^2 = (0) A = 1 9 \text{ any order}$
				$(\log d \log t_0 \sum d^2 = 14 \text{ and } y = -2)$
				(leading to $2a - 14$ and $r_s - \frac{1}{5}$).
				M0A0M1M1A0
Total		5		1 0 557
31a	$(1 - 0.5565)$ or $12 \times 0.85^{11} \times (1 - 0.85) + 0.85^{12}$	MI	or $1 - ((1-0.85)^{12} \dots (2C_{10} \times 0.85)^{10} (1-0.85)^{2})$	or 1 – 0.557
			le I – (all II correct binomial terms)	NIP 1 $0.4425(22)$: M0A0
	= 0.4435 or 0.443 or 0.444 (3 sf)	A1 2		ND I = 0.4433 (00). MOA0
b	$0.5565 - 0.2642$ or ${}^{12}C_{10}(1 - 0.85)^2(0.85)^{10}$	M1		or 0.557 – 0.264
	= 0.2923 or 0.2924 or 0.292 (3 sf)	A1 2		
с	$12 \times 0.85 \times (1-0.85)$	M1		
	= 1.53 oe	A1 2		
ii	$\left(\frac{3}{4}\right)^2$ AND $\frac{3}{4} \times \frac{1}{4}$ seen (possibly $\times 2$)	M1	eg $(\frac{3}{4})^2 + \frac{3}{4} \times \frac{1}{4}$ or $2 \times (\frac{3}{4})^2 + 2 \times \frac{3}{4} \times \frac{1}{4}$	or $\frac{9}{16}$ and $\frac{3}{16}$ or $\frac{9}{16}$ and $\frac{3}{2}$ eg in table or list
	(4) 4 4 Grand (1)		a^{-1} a	16 16 16 8 0
			$010.3023 \pm 0.1875010.3023 \pm 0.575$	
	$(\frac{3}{2})^2 \times 2 \times \frac{3}{2} \times \frac{1}{2}$ or 0.211	M1	or eg 0.5625×0.375	Allow even if further incorrect wking
	$2 \times (\frac{3}{4})^2 \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe	M1	Fully correct method	
	$=\frac{27}{100}$ or 0.422 (3 sfs)	A1 4		Ans 0.211: check wking but probably gets
	64 61 61 62 (0 515)			MIMIMOAO
				Use of 0.85 instead of ¹ · MP may M1M1M1A0
				Use of 0.85 instead of $\frac{1}{4}$: MK max MIMIMIA0
Total		10		

41	Method is either: Just $4 \div 3$ or $\frac{4}{3}$					
	or: Use of ratio of correct frequencies AND ratio of widths (correct or 4 and 2)					
4i	$5.6 \times \frac{4}{28} \times \frac{5}{3}$ or $0.8 \times \frac{5}{3}$		M1 for $5.6 \times \frac{4}{28} \times \frac{4}{2}$ or $0.8 \times \frac{4}{2}$	Correct calc'n using 5.6, 28, 4, 5, 3 oe: M2 Correct calc'n using 5.6, 28, 4, 4, 2 oe: M1		
	or $(5.6 \div \frac{28}{5}) \times \frac{4}{3}$ or $\frac{4}{3}$ or $4 \div 3$ oe	M2	or $(5.6 \div \frac{28}{4}) \times \frac{4}{2}$ or 0.8×2 oe (= 1.6)	is fully correct method: M2		
	$=1\frac{1}{2}$ or $\frac{4}{2}$ or 1.33 (3 sf) of	Δ1 3		or: incorrect class widths, otherwise correct method: M1		
	3 3 3 1 1 (1) 1 1	111 5	No wking, ans 1.3: M2A0	$\frac{4}{3}$ correctly obtained (or no wking) then further incorrect:		
			Ans 1.6: Check wking but probably M1M0A0	M1M0A0		
				Use of ratio of widths OR freqs but not both: M0		
				eg 5.6 × $\frac{4}{28}$ (= 0.8) or 5.6 × $\frac{3}{5}$ (= 3.36): M0		
				$\frac{4}{2} = 2$: M0M0A0		
ii	25 or 26 or 25.5	B1	or 25 & 26	May be implied, eg by 21 or 22 or 21.5		
	Med is 21^{st} (or 22^{nd} or 21.5^{th}) in 31-35 class or "25 - 4" Can be implied by calc'n	B1	or med in last \approx 7 in class or 33 \approx 14 th in class or 33 \approx 18 th in whole set Can be implied by diagram	Calc'ns need not be correct but need to contain relevant figures for gaining B1B1		
	Med > 33 or "more than"	B1 3	indep	The " \approx " sign means ± 2		
				$\frac{\text{Alternative Method}}{33 \approx 18^{\text{th}} \text{ value}} \qquad \qquad \text{B1}$		
				More values above 33 than below oe B1 Med > 33 B1		
				Ignore comment on skew		
				NB Use EITHER the main method OR the <u>Alternative Method</u> (above), not a mixture of the two Choose the method that gives most marks		

Mark Scheme

June 2011

[L N / 1	· · · · ·	
111	\geq 3 mid-pts attempted	MI	seen or implied	Not nec'y correct values (29, 33, 40.5, 53)
	$\Sigma fx \div 50 \text{ attempted} (= \frac{1819}{50})$	M1	> 3 terms	Allow on boundaries Not class widths
	= 36.38 or 36.4 (3 sf)	Al	or 36 with correct working	
			5	
	Σfx^2 attempted (= 68055.5)	M1	\geq 3 terms.	Allow on boundaries. Not class widths
				(3364, 30492, 22963.5, 11236)
	$68055.5 (1819)^2$ or $(1261.11 - 26.28)^2$	MI		
	$\sqrt{\frac{50}{50}} - (\frac{50}{50})$ of $\sqrt{1301.11} - 30.38$	MII	completely correct method except midpts & π	Allow class widths for this mark only
	(=√37.6056)		their mean, dep not v(neg)	NB mark is not just for "- mean", unlike q5(11)
				$\Sigma(6)^2$: MOMOAO
	= 6.13 (3 sfs)	A1 6		$\mathcal{L}(x)$. WOWOAO
	0.15 (5 515)			If no wking for Σfr^2 check using their r and f
	Alt for variance			in no writing for 23x, check using them x and y
	$\Sigma f(x - \bar{x})^2 (= 1880.28)$ M1			If no wking or unclear wking:
	$\frac{1}{\sqrt{1880.28}}$ (1000.20) 101			full mks for each correct ans
	$\sqrt{\frac{1880.28}{50}}$ M1			for incorrect ans:
	= 6.13 (3 sf) A1			$35.8 \le \mu \le 36.9$ M0M1A0
				$6.0 \le sd \le 6.25$ M1M0A0
iv	(a) Decrease (b) Increase	B1B1	Ignore other, eg "slightly" or "probably"	Ignore any comments or reasons, even if
	(c) Same (d) Same	B1B1 4		incorrect
Total		16		
5	If done with replacement, no marks in any pa	rt of this c	uestion.	
51	All correct probs correctly placed,		B1 for 4 correct probs anywhere	Allow B2 with missing labels but only if probs
	matching labels, if any	B2 2		consistently placed, ie R above B throughout
11	$\frac{4}{10} \times \frac{6}{9} + \frac{6}{10} \times \frac{4}{9} \times \frac{5}{8} + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}$		B1: two of these products (or their results) added	
	or $\frac{4}{1} + \frac{1}{1} + \frac{1}{1}$		(not multiplied)	
	15 6 6			P1 : 1 two of these products (or regults) added
		$D \angle \angle$	or $1 - (\frac{5}{10} \times \frac{5}{9} \times \frac{1}{8} + \frac{5}{10} \times \frac{7}{9} \times \frac{5}{8} + \frac{7}{10} \times \frac{5}{9})$	D1. 1 – two of these products (of results) added (not multiplied)
	$\left(=\frac{3}{5} \text{ AG}\right)$		or $1 - (\frac{1}{2} + \frac{1}{2} + \frac{2}{2})$	(not multiplied)
	_		6 10 15 '	NB incorrect methods can lead to correct ans
				AG so no wking no mks
				No ft from tree in (i)

Mark Scheme

iii	$\Sigma xp \text{ attempted} = \frac{16}{15} \text{ oe or } 1.07 \text{ (3 sfs)}$	M1 A1	Both non-zero terms	\div 3 etc or $\frac{1}{\Sigma xp}$: M0	
	$\Sigma x^{2} p \text{ attempted} \qquad (= \frac{23}{15} \text{ or } 1.53)$ $- \frac{16}{15} \frac{12}{15} = \frac{89}{225} \text{ oe } \text{ or } 0.395 \text{ or } 0.396 \text{ (3 sfs)}$	M1 M1 A1 5	Both non-zero terms indep but dep +ve result Ans 0.388: check wking	÷ 3 etc: or $\frac{1}{\Sigma x^2 p}$: M0 but probably comes	Not Σxp^2 NB easier to gain than equiv mark in qu 4(iii) not 0.395, but check for dot over 5 for recurring
	Alt for Var(X): $\Sigma(x-\bar{x})^2 p$ M2		from $\mu = 1.07$; prematur $\frac{1}{6} \times \frac{16}{15}^2 + \frac{3}{5} \times \frac{1}{15}^2 + \frac{3}{5}$ all correct M2, 2 terms of	e rounding: M1M1A0 $\frac{7}{30} \times \frac{14}{15}^2$ correct M1	
Total		9			
61a	5040	B1 1			
b	6! or 5!×6 or 720	MI		$1/_{7} \times 1/_{6}$ M1*	NOT 6! in denom
	\div 7! or \div "5040" or 1440 or (5! or 6!) \times 2 = $^{2}/_{7}$ oe or 0.286 (3 sf)	M1 A1 3	Any \div 7! or "5040" but NOT any \times 2	\times 6 or \times 2 M1 dep*	eg $^{6!}/_{5040}$ or $^{1}/_{7}$ or 0.143 or $^{1}/_{21}$ (3 sfs): M1M1A0
iia	$3! \times 4!$ alone or 144 (÷ 7! or "5040")	M1	$\frac{4}{7} \times \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$ oe	or 7C3or7C4	Not $3! \times 4! \times \dots$ (eg not $3! \times 4! \times 5$) not $\frac{1}{3! \times 4!}$, not $\frac{1}{144}$
	$= 7_{35} \text{ of } 0.0286 (381)$	AI 2			NB no mark for \div 7! or "5040" in this part
b	5 seen or 5! seen	M1			or GGGBBBB, BGGGBBB, BBGGGBB, BBBGGGB, BBBBGGG
	$3! \times 4! \times 5$ or $5! \times 3!$ or 720 or 5×144	M1	or $5 \times \frac{3}{7} \times \frac{2}{6} \times \frac{1}{5} (\times \frac{4}{4} \times \frac{3}{7})$ or $5 \times \frac{1}{7C3 \text{ or } 7C4}$	$_{3}\times^{2}/_{2}$) oe: M2 M2	NB no mark for \div 7! or "5040" in this part
	$(\div 7! \text{ or } ``5040'')$ = ¹ / ₇ oe or 0.143 (3 sf)	A1 3	or 5 × "(iia)":	M2	
Total		9			

7i		B1 1	Ignore explanations. "Neither" or "Both": B0			
ii	Diag showing vertical differences only	B1	Allow description instead of diag: "Distances from pts to line // to y-axis" oe	Allow \geq one line, from a point to the line		
	State that sum of squares of these is min oe	B1 2	dep vert or horiz lines (not both) drawn or described	Must have Min, Squares, Distances & Sum		
iii	-1 Ranks opposite or reversed or <u>perfect</u> neg corr'n between <u>ranks</u> oe	B1 B1dep 2	Not approx –1 As <i>x</i> increases, <i>y</i> decreases	Allow eg: -1 because neg corr'n so ranks must be reversed Ignore other NOT neg corr'n or strong neg rel'nship oe NOT comment about "disagreement" or "agreement"		
iv	"Negative" or "Not –1"	B1 1	eg "Strong neg" or any negative value > -1 or "Close to -1 "	Any implication of Negative, except NOT "Negative gradient" and NOT " -1 " given as the value of r		
Total		6				
8	Incorrect p (eg "cubical die means 18 sides h	ence $p = \frac{1}{1}$	$\frac{1}{8}$ "): can gain all B & M marks.			
8i	$\frac{25}{216}$ oe or 0.116 (3 sfs)	B1 1	[
ii	$(5/6)^7 \times 1/6$ alone	M2	M1 for $({}^{5}/_{6})^{8} \times {}^{1}/_{6}$ alone			
	$= 0.0465 (3 \text{ sfs}) \text{ or } \frac{78125}{1679616}$	A1 3				
iii	$(\frac{5}{6})^{8}$ oe alone = 0.233 (3 sfs) or $\frac{390625}{1679616}$	M1 A1 2	$1 - P(X \le 8)$, with exactly 8 correct terms	NOT $1 - (\frac{5}{6})^8$, NOT $(\frac{5}{6})^8 \times \dots$		
iv	NB If more than 5 products are added (eg P($1 \le X \le 12$): no marks					
	$ \begin{pmatrix} (5/6)^9 \times 1/6 + (5/6)^{10} \times 1/6 + (5/6)^{11} \times 1/6 + (5/6)^{12} \times 1/6 \\ (= 0.0323 + 0.0268 + 0.0224 + 0.0187) \end{pmatrix} $	M3	M3 for all correct or M2 for 3 of these added or these 4 plus 1	$\binom{5}{6}^{9} - \binom{5}{6}^{13} \text{ or } 1 - \binom{5}{6}^{13} - [1 - \binom{5}{6}^{9}] \text{ M3}$		
			extra or 0.0817 or 0.0680 or 0.139 or 0.116	or $(7_6)^{-(7_6)} = (7_6)^{-(7_6)}$ or $1 - (5_6)^{12, 13 \text{ or } 14} - [(1 - (5_6)^{8, 9 \text{ or } 10}]$ M2		
			or M1 for \geq 1 of these terms or values seen; ignore incorrect	or $\pm [({}^{5}/_{6})^{9} - (1 - ({}^{5}/_{6})^{13})]$ or $\pm [1 - ({}^{5}/_{6})^{9} - ({}^{5}/_{6})^{13}]$ M1		
	= 0.100 (3 sts)	A1 4	Allow 0.1 with wking			
Total		10				

Total 72 marks

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

