RECOGNISING ACHIEVEMENT

GCE

Mathematics

Advanced GCE
Unit 4732: Probability and Statistics 1

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Note: "(3 sfs)" means "answer which rounds to... to 3 sfs ". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding
Penalise over-rounding only once in paper.

1ia	$\begin{aligned} & \frac{3247-\frac{25 \times 65}{5}}{\sqrt{\left(14323-\frac{251^{2}}{5}\right)\left(855-\frac{65^{2}}{5}\right)}} \text { or } \frac{-16}{\sqrt{1722.8 \times 10}} \\ & =-0.1219 \ldots \end{aligned}$	$\begin{array}{ll} \mathrm{M} 2 \\ & \\ \text { A1 } & 3 \end{array}$	M1 for correct subst in any correct S formula M2 for correct subst'n in any correct r formula Must see at least 4 sfs	or $\frac{-80}{\sqrt{8614 \times 50}}$ Allow -0.1218
b	Poor/no/little/weak/not strong corr'n or rel'nship or link between income \& distance oe	B1 1	or slight neg/weak corr'n (oe) between income \& distance In context, ie any comment on income \& distance, even if incorrect	eg, Poor neg corr'n, so higher distance, lower income No rel'nship. Low income doesn't cause low distance NOT "Not proportional ..." NOT "negative corr'n ..." No recovery of this mark in (ii)
c	No effect or -0.122 oe	B1 1	eg "Nothing" or "None" oe	Ignore other NOT "Little effect" NOT "Not much effect"
ii	r close to 0 , or small, or poor corr'n oe or $r=-0.122$ Unreliable	B1 B1dep 2	or Weak/no corr'n or poor rel'nship oe or No evidence to link sales \& distance Condone "innacurate"or "incorrect" or "less reliable" or "not that reliable" "The data is unreliable" Must have correct reason	or because small sample Ignore other Allow: "Unreliable because pts do not fit a st line" "Unreliable because pts are scattered" "Unreliable because not strong neg" "Unreliable because r not close to -1" "Unreliable because r smaller than (-)0.7" NOT "Unreliable because extrapolated": B0B0 but "Unreliable because extrapolated and poor corr'n": B1B1
Total		7		

2	Attempt ranks 4123 or 1234 or 1234 oe $2134 \quad 1342 \quad 1423$ Σd^{2} attempted (or 6) $\begin{aligned} & 1-\frac{6 \Sigma d^{2}}{4\left(4^{2}-1\right)} \\ & =\frac{2}{5} \mathrm{oe} \end{aligned}$	M1 A1 M1 M1 A1 5	Ignore labels of rows or columns $\begin{aligned} & \text { No ranks seen, } d=(0), \pm 1, \pm 1, \pm 2, \text { or } \\ & \text { NOT }(\Sigma d)^{2} \quad d^{2}=(0), 1,1,4 \text { any order: M1A1 } \end{aligned}$	No wking, $\Sigma d^{2}=6$: M1A1M1 No wking, $\Sigma d^{2}=$ eg 14: M0A0M0, but can gain $3^{\text {rd }}$ M1 No wking, ans $\frac{2}{5}$: Full mks Allow both sets of ranks reversed NB incorrect method: 2341 2134 OR $d=(0), \pm 2, \pm 1, \pm 3$ any order OR $d^{2}=(0), 4,1,9$ any order (leading to $\Sigma d^{2}=14$ and $r_{s}=-\frac{2}{5}$):
Total		5		
3ia	$\begin{aligned} & (1-0.5565) \text { or } 12 \times 0.85^{11} \times(1-0.85)+0.85^{12} \\ & =0.4435 \text { or } 0.443 \text { or } 0.444(3 \mathrm{sf}) \end{aligned}$	M1 $\text { A1 } 2$	$\text { or } 1-\left((1-0.85)^{12} \ldots .^{12} \mathrm{C}_{10} \times 0.85^{10}(1-0.85)^{2}\right)$ ie $1-$ (all 11 correct binomial terms)	or 1-0.557 NB $1-0.4435$ (oe): M0A0
b	$\begin{aligned} & 0.5565-0.2642 \text { or }{ }^{12} \mathrm{C}_{10}(1-0.85)^{2}(0.85)^{10} \\ & =0.2923 \text { or } 0.2924 \text { or } 0.292(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 \\ \text { A1 } & 2 \end{array}$		or $0.557-0.264$
c	$\begin{aligned} & 12 \times 0.85 \times(1-0.85) \\ & =1.53 \mathrm{oe} \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$		
ii	$\left(\frac{3}{4}\right)^{2}$ AND $\frac{3}{4} \times \frac{1}{4}$ seen (possibly $\times 2$) $\left(\frac{3}{4}\right)^{2} \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe \quad or $\frac{27}{128}$ or 0.211 $2 \times\left(\frac{3}{4}\right)^{2} \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe $=\frac{27}{64}$ or $0.422(3 \mathrm{sfs})$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 4 \end{aligned}$	eg $\left(\frac{3}{4}\right)^{2}+\frac{3}{4} \times \frac{1}{4}$ or $2 \times\left(\frac{3}{4}\right)^{2}+2 \times \frac{3}{4} \times \frac{1}{4}$ or $0.5625+0.1875$ or $0.5625+0.375$ or eg 0.5625×0.375 Fully correct method	or $\frac{9}{16}$ and $\frac{3}{16}$ or $\frac{9}{16}$ and $\frac{3}{8} \quad$ eg in table or list Allow even if further incorrect wking Ans 0.211 : check wking but probably gets M1M1M0A0 Use of 0.85 instead of $\frac{1}{4}:$ MR max M1M1M1A0
Total		10		

4 i	Method is either: Just $4 \div 3$ or $\frac{4}{3}$ or: Use of ratio of correct frequencies AND ratio of widths (correct or 4 and 2)			
4 i	$5.6 \times \frac{4}{28} \times \frac{5}{3}$ or $0.8 \times \frac{5}{3}$ or $\left(5.6 \div \frac{28}{5}\right) \times \frac{4}{3} \quad$ or $\frac{4}{3}$ or $4 \div 3 \quad$ oe $=1 \frac{1}{3}$ or $\frac{4}{3}$ or $1.33(3 \mathrm{sf})$ oe	M2 A1 3	M1 for $5.6 \times \frac{4}{28} \times \frac{4}{2}$ or $0.8 \times \frac{4}{2}$ or $\left(5.6 \div \frac{28}{4}\right) \times \frac{4}{2} \quad$ or $0.8 \times 2 \quad$ oe $\quad(=1.6)$ No wking, ans 1.3: M2A0 Ans 1.6: Check wking but probably M1M0A0	Correct calc'n using 5.6, 28, 4, 5, 3 oe: M2 Correct calc'n using 5.6, 28, 4, 4, 2 oe: M1 ie fully correct method: M2 or: incorrect class widths, otherwise correct method: M1 $\frac{4}{3}$ correctly obtained (or no wking) then further incorrect: M1M0A0 Use of ratio of widths OR freqs but not both: M0 eg $5.6 \times \frac{4}{28}(=0.8)$ or $5.6 \times \frac{3}{5}(=3.36): \quad$ M0 $\frac{4}{2}=2: \text { M0M0A0 }$
ii	25 or 26 or 25.5 Med is $21^{\text {st }}$ (or $22^{\text {nd }}$ or $21.5^{\text {th }}$) in 31-35 class or " $25-4$ " Can be implied by calc'n Med >33 or "more than"	B1 B1 B1 3	or $25 \& 26$ or med in last ≈ 7 in class or $33 \approx 14^{\text {th }}$ in class or $33 \approx 18^{\text {th }}$ in whole set Can be implied by diagram indep	May be implied, eg by 21 or 22 or 21.5 Calc'ns need not be correct but need to contain relevant figures for gaining B1B1 $\text { The " } \approx \text { " sign means } \pm 2$ Alternative Method: Ignore comment on skew NB Use EITHER the main method OR the Alternative Method (above), not a mixture of the two. Choose the method that gives most marks.

iii	$\begin{array}{ll} \geq 3 \text { mid-pts attempted } \\ \Sigma f x \div 50 \text { attempted } & \left(=\frac{1819}{50}\right) \\ =36.38 \text { or } 36.4(3 \mathrm{sf}) & \\ \\ \Sigma f x^{2} \text { attempted } \quad(=68055.5) \end{array}$ $\begin{aligned} & \begin{array}{l} \sqrt{\frac{68055.5}{50}-\left(\frac{1819}{50}\right)^{2}} \end{array} \text { or } \sqrt{1361.11-36.38^{2}} \\ & (=\sqrt{37.6056}) \end{aligned}$ Alt for variance: $\begin{array}{\|ll} \Sigma f(x-\bar{x})^{2}(=1880.28) & \text { M1 } \\ \sqrt{\frac{1880.28}{50}} & \text { M1 } \\ =6.13(3 \mathrm{sf}) & \text { A1 } \end{array}$	M1 M1 A1 M1 M1 A1 6	seen or implied ≥ 3 terms. or 36 with correct working ≥ 3 terms. completely correct method except midpts \& ft their mean, dep not $\sqrt{ }$ (neg)	Not nec'y correct values $(29,33,40.5,53)$ Allow on boundaries. Not class widths Allow on boundaries. Not class widths (3364, 30492, 22963.5, 11236) Allow class widths for this mark only NB mark is not just for "- mean ${ }^{2} "$, unlike q5(iii) $\Sigma(f x)^{2}: \text { M0M0A0 }$ If no wking for $\Sigma f x^{2}$, check using their x and f If no wking or unclear wking: full mks for each correct ans for incorrect ans: $\begin{array}{ll} 35.8 \leq \mu \leq 36.9 & \text { M0M1A0 } \\ 6.0 \leq \text { sd } \leq 6.25 & \text { M1M0A0 } \end{array}$
iv	(a) Decrease (b) Increase (c) Same (d) Same	$\begin{aligned} & \text { B1B1 } \\ & \text { B1B1 } 4 \end{aligned}$	Ignore other, eg "slightly" or "probably"	Ignore any comments or reasons, even if incorrect
Total		16		
5	If done with replacement, no marks in any	-	,	
5 i	All correct probs correctly placed, matching labels, if any		B1 for 4 correct probs anywhere	Allow B2 with missing labels but only if probs consistently placed, ie R above B throughout
ii	$\begin{aligned} & \frac{4}{10} \times \frac{6}{9}+\frac{6}{10} \times \frac{4}{9} \times \frac{5}{8}+\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} \\ & \text { or } \frac{4}{15}+\frac{1}{6}+\frac{1}{6} \\ & \left(=\frac{3}{5} \quad \text { AG }\right) \end{aligned}$	B2 2	B1: two of these products (or their results) added (not multiplied) or $1-\left(\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}+\frac{6}{10} \times \frac{4}{9} \times \frac{3}{8}+\frac{4}{10} \times \frac{3}{9}\right)$ or $1-\left(\frac{1}{6}+\frac{1}{10}+\frac{2}{15}\right)$	B1: 1- two of these products (or results) added (not multiplied) NB incorrect methods can lead to correct ans AG so no wking no mks No ft from tree in (i)

iii	$\begin{aligned} & \Sigma x p \text { attempted } \\ & =\frac{16}{15} \text { oe or } 1.07(3 \mathrm{sfs}) \\ & \Sigma x^{2} p \text { attempted } \quad\left(=\frac{23}{15} \text { or } 1.53\right) \\ & \quad-\quad \text { "16 } \frac{16}{15}{ }^{2} \\ & =\frac{89}{225} \text { oe or } 0.395 \text { or } 0.396(3 \mathrm{sfs}) \end{aligned}$ Alt for $\operatorname{Var}(X)$: $\Sigma(x-\bar{x})^{2} p$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Both non-zero terms $\quad \div 3$ etc or $\frac{1}{\Sigma x p}:$ M0 Both non-zero terms $\quad \div 3$ etc: or $\frac{1}{\Sigma x^{2} p}:$ M0 indep but dep + ve result Ans 0.388 : check wking but probably comes from $\mu=1.07$; premature rounding: M1M1A0 $\frac{1}{6} \times \frac{16}{15}^{2}+{\frac{3}{5} \times \frac{1}{15}^{2}+{\frac{7}{30} \times \frac{14}{15}^{2}}^{2} \text {. }{ }^{2}}^{2}$ all correct M2, 2 terms correct M1	$\operatorname{Not} \Sigma x p^{2}$ NB easier to gain than equiv mark in qu 4(iii) not 0.395 , but check for dot over 5 for recurring
Total		9		
6ia	5040	B1 1		
b	$\begin{aligned} & 6!\text { or } 5!\times 6 \\ & \div 7!\text { or } \div \text { " } 5040 \text { " or } 1440 \text { or }(5!\text { or } 6!) \times 2 \\ & =2 / 7 \text { oe or } 0.286(3 \mathrm{sf}) \end{aligned}$	M1 M1 $\text { A1 } 3$	Any $\div 7$! or " $5040 "$ but NOT any $\times 2$$\|$$1 / 7 \times 1 / 6$ M1* $\times 6$ or $\times 2$ M1 dep*	NOT $6!$ in denom eg $6!/ 5040$ or $1 / 7$ or 0.143 or $1 / 21(3 \mathrm{sfs})$: M1M1A0
iia	$\begin{aligned} & 3!\times 4!\text { alone or } 144 \\ & (\div 7!\text { or } " 5040 ") \\ & =1 / 35 \text { oe } \text { or } 0.0286(3 \mathrm{sf}) \end{aligned}$	M1 $\text { A1 } 2$	$4 / 7 \times 3 / 6 \times 3 / 5 \times 2 / 4 \times 2 / 3 \times 1 / 2$ oe or $\frac{1}{7 C 3 o r 7 C 4}$	Not $3!\times 4!\times \ldots($ eg not $3!\times 4!\times 5)$ not $\frac{1}{31 \times 4!}$, not $\frac{1}{144}$ NB no mark for $\div 7$! or " 5040 " in this part
b	5 seen or 5 ! seen $3!\times 4!\times 5$ or $5!\times 3!$ or 720 or 5×144 $\begin{aligned} & (\div 7!\text { or " } 5040 ") \\ & =1 / 7 \text { oe or } 0.143(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 3	or $5 \times 3 / 7 x^{2} / 6 \times 1 / 5\left(\times^{4} / 4 \times 3 / 3 x^{2} / 2\right)$ oe: M2 or $5 \times \frac{1}{7 C 3 \text { or } 7 C 4}$: M2 or $5 \times$ "(iia)": M2	or $\mathrm{GGGBBBB}, \mathrm{BGGGBB}, \mathrm{BBGGGBB}, \mathrm{BBBGGG}$, BBBBGGG NB no mark for $\div 7$! or " 5040 " in this part
Total		9		

7 i	x	B1 1	Ignore explanations. "Neither" or "Both": B0	
ii	Diag showing vertical differences only State that sum of squares of these is min oe	$\begin{array}{ll} \mathrm{B} 1 \\ \mathrm{~B} 1 & 2 \end{array}$	Allow description instead of diag: "Distances from pts to line // to y-axis" oe dep vert or horiz lines (not both) drawn or described	Allow \geq one line, from a point to the line Must have Min, Squares, Distances \& Sum
iii	-1 Ranks opposite or reversed or perfect neg corr'n between ranks oe	B1 B1dep 2	Not approx -1 As x increases, y decreases	Allow eg: -1 because neg corr'n so ranks must be reversed Ignore other NOT neg corr'n or strong neg rel'nship oe NOT comment about "disagreement" or "agreement"
iv	"Negative" or "Not-1"	B1 1	eg "Strong neg" or any negative value >-1 or "Close to -1 "	Any implication of Negative, except NOT "Negative gradient" and NOT " -1 " given as the value of r
Total		6		
8	Incorrect p (eg "cubical die means 18 sides hence $p=\frac{1}{18}$ "): can gain all B \& M marks.			
8 i	25/216 oe or 0.116 (3 sfs)	B1 1		
ii	$(5 / 6)^{7} \times 1 / 6$ alone $=0.0465(3 \mathrm{sfs})$ or $\frac{78125}{1679616}$	M2 A1 3	M1 for $(5 / 6)^{8} \times 1 / 6$ alone	
iii	$\begin{aligned} & (5 / 6)^{8} \text { oe alone } \\ & =0.233(3 \mathrm{sfs}) \text { or } \frac{390625}{1679616} \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	$1-\mathrm{P}(X \leq 8)$, with exactly 8 correct terms	NOT $1-\left(\frac{5}{6}\right)^{8}, \quad \operatorname{NOT}\left(\frac{5}{6}\right)^{8} \times \ldots$
iv	NB If more than 5 products are added (eg P($\begin{aligned} & (5 / 6)^{9} \times^{1 / 6}+(5 / 6)^{10} \times 1 / 6+(5 / 6)^{11} \times 1 / 6+(5 / 6)^{12} \times 1 / 6 \\ & (=0.0323+0.0268+0.0224+0.0187) \end{aligned}$ $=0.100(3 \mathrm{sfs})$	$\leq X \leq 12$ M3 A1 4	: no marks M3 for all correct or M2 for 3 of these added or these 4 plus 1 extra or 0.0817 or 0.0680 or 0.139 or 0.116 or M1 for ≥ 1 of these terms or values seen; ignore incorrect Allow 0.1 with wking	$\begin{array}{ll} (5 / 6)^{9}-(5 / 6)^{13} \quad \text { or } 1-(5 / 6)^{13}-\left[1-(5 / 6)^{9}\right] & \text { M3 } \\ \text { or }(5 / 6)^{8,9} \text { or } 10-(5 / 6)^{12,13 \text { or } 14} \\ \text { or } 1-(5 / 6)^{12,13 \text { or } 14}-\left[\left(1-(5 / 6)^{8,9} \text { or } 10\right]\right. & \text { M2 } \\ \text { or } \pm\left[(5 / 6)^{9}-\left(1-(5 / 6)^{13}\right)\right] \text { or } \pm\left[1-(5 / 6)^{9}-(5 / 6)^{13}\right] & \text { M1 } \end{array}$
Total		10		

Total 72 marks

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

